Topics:
$\renewcommand{bt}[1]{\bs{\tilde #1}} $
Robert Wilson: Consciousness itself is an infinite regress.
Given an unknown scalar function $\renewcommand{bs}{\boldsymbol} y = y(\boldsymbol x)$, where the argument $\bs x$ is a $n$ dimensional vector.
We have $m > n$ observations: $X$ represents inputs and $\bs y$ represents outputs:
$$\small X = \pmatrix{\bs x_1^T \\ \bs x_2^T \\ \vdots \\ \bs x_m^T}, \;\; \bs y = \pmatrix{y_1 \\ y_2 \\ \vdots \\ y_m}$$
We want to find a factor loading vector $\bs \beta$ so that the linear function $\hat y = \bs x^T \bs \beta$ best approximate the observed inputs/outputs.
$$ \bs \beta^* = \text{argmin}_{\bs {\beta}} \Vert X \bs{\beta - y} \Vert_2$$ Which can be easily solved using Matrix calculus:
$$\begin{eqnarray} \Vert X \bs{\beta - y} \Vert_2^2 &=& (X \bs{\beta - y})^T (X \bs{\beta - y}) \\ &=& \bs{\beta}^T X^T X \bs{\beta} - 2 \bs{\beta}^TX^T\bs y + \bs y^T\bs y\\ \frac{\partial}{\partial \bs \beta^T} \Vert X \bs{\beta - y} \Vert_2^2 &=& 2 X^TX \bs \beta - 2X^T \bs y = \bs 0 \\ \bs \beta^* &=& (X^TX)^{-1}X^T\bs y \end{eqnarray}$$
We already proved that an invertible matrix $A$'s condition number is
$$k(A) = \Vert A \Vert \Vert A^{-1} \Vert$$
We can extend this to non-square matrix using pseudo-inverse, following the same proof.
$$k(A) = \Vert A \Vert \Vert A^{+} \Vert$$
The $\bs \beta$ that solves the least square problem may have large magnitude:
Ridge regression adds a magnitude penalty to the objective function of least square:
$$\begin{eqnarray} l(\bs \beta) &=& \Vert X \bs{\beta - y} \Vert_2^2 + \lambda \Vert W \bs \beta \Vert_2^2 \\ &=& \bs{\beta}^T X^T X \bs{\beta} - 2 \bs{\beta}^TX^T\bs y + \bs y^T \bs y + \lambda \bs \beta^T W^TW \bs \beta \\ \frac{\partial l}{\partial \bs \beta^T} &=& 2X^TX \bs \beta - 2X^T \bs y + 2 \lambda W^T W \bs \beta = \bs 0 \\ \bs \beta &=& (X^TX + \lambda W^TW)^{-1}X^T\bs y \end{eqnarray}$$
We draw many pairs of $x, y, z$ from the following linear model:
$$ y = 2x + 0.0001z + 5 + \epsilon $$
We regress the vector $\bs y$ against $X = [\bs x, \bs x + .0001 \bs z, \bs 1]$:
import pandas as pd
n = 5000
x = np.random.normal(size=n)
z = np.random.normal(size=n)
y = 2*x + 5 + 0.0001*z + np.random.normal(size=n)
xs = np.array([x, x + 0.0001*z, np.ones(len(x))]).T
q = np.eye(len(xs.T))
lbd = .1
b_ols = np.linalg.inv(xs.T.dot(xs)).dot(xs.T).dot(y)
e_ols = np.linalg.norm(y - xs.dot(b_ols), 2)
b_rr = np.linalg.inv(xs.T.dot(xs) + lbd*q.T.dot(q)).dot(xs.T).dot(y)
e_rr = np.linalg.norm(y - xs.dot(b_rr), 2)
df = pd.DataFrame(np.array([b_ols, b_rr]), index=['Least square', 'Ridge regression $\\lambda=%2g$' % lbd],
columns=['$\\bs x$', '$\\bs x+.0001\\bs z$', '$\\bs 1$'])
df['$\Vert X\\bs \\beta - \\bs y \\Vert_2$'] = [e_ols, e_rr]
fmt.displayDF(df, "4g")
$\bs x$ | $\bs x+.0001\bs z$ | $\bs 1$ | $\Vert X\bs \beta - \bs y \Vert_2$ | |
---|---|---|---|---|
Least square | -236.4 | 238.4 | 5.001 | 70.33 |
Ridge regression $\lambda=0.1$ | 0.9415 | 1.062 | 5.001 | 70.35 |
Ridge regression is an example of regularization. Two other popular regularizations are:
$$ l(\bs \beta) = \Vert X \bs{\beta - y} \Vert_2^2 + \lambda \Vert W \bs \beta \Vert_1 $$
$$ l(\bs \beta) = \Vert X \bs{\beta - y} \Vert_2^2 + \lambda_1 \Vert W \bs \beta \Vert_1 + \lambda_2 \Vert W \bs \beta \Vert_2^2 $$
Both LASSO and Elastic-Net are equivalent to support vector machine (SVM).
For a square matrix $A$ of size $n \times n$, if there exists a vector $\bs {v \ne 0}$ and a scalar $\lambda $ so that:
$$ A \bs v = \lambda \bs v $$
Rewrite the equation as:
$$ (A - \lambda I) \bs {v = 0}$$
It has non-zero solution if and only if:
$$ p(\lambda) = \det(A - \lambda I) = 0$$
where $p(\lambda)$ is a polynomial of degree $n$.
For matrix $A$ of size $n \times n$:
It is difficult to solve the characteristic function for $\lambda_i$, especially for large $n$.
Eigenvectors are usually specified as unit L2 vectors of $\Vert \bs v \Vert_2^2 = \bs v^T \bs v = 1$.
Eigen vectors of distinct eigenvalues are linearly independent.
$$ \begin{array} \\ \bs{v_k} &= \sum_{i=1}^{k-1}c_i\bs{v_i} \\ \lambda_k \bs{v_k} &= \sum_{i=1}^{k-1}c_i\lambda_i\bs{v_i} = \lambda_k \sum_{i=1}^{k-1}c_i\bs{v_i} \\ \bs 0 &= \sum_{i=1}^{k-1}c_i(\lambda_i - \lambda_k) \bs{v_i} \end{array} $$
this leads to contradiction.
If $A$ has $n$ distinct eigenvalues, then all the eigenvectors form a basis for the vector space and we can write:
$$ A R = R \Lambda$$
$R$ is invertible because eigenvectors are all independent:
$$\begin{array} \\ R^{-1} A &= \Lambda R^{-1} \\ A^*(R^{-1})^* &= (R^{-1})^* \Lambda^* \\ \end{array}$$
$$A R = R\Lambda \iff A^*(R^{-1})^* = (R^{-1})^* \Lambda^* $$
If $A$ is real and symmetric: $A^* = A$:
$A = R\Lambda R^T$, this diagonalization is called the eigenvalue decomposition (EVD)
If $A$ is real and symmetric:
Apply Lagrange multiplier:
$$\begin{array} \\ l &= \bs u^T A \bs u - \gamma (\bs u^T \bs u - 1) \\ \frac{\partial l}{\partial \bs u^T} &= 2 A \bs u - 2\gamma \bs u = \bs 0 \iff A \bs u = \gamma \bs u \end{array}$$
This process can be repeated to find all eigenvalues and vectors:
Square matrix $B$ and $A$ are similar if $B = PAP^{-1}$:
$$ AR = P^{-1}BP R = R \Lambda \iff B (PR) = (PR) \Lambda $$
It is very challenging to solve eigenvalues for large matrices.
The basic idea of solving eigenvalues of matrix $A$:
Nassim Taleb: Decomposition, for most, starts when they leave the free, social, and uncorrupted college life for the solitary confinement of professions and nuclear families.
Any real matrix $A$ can be decomposed into $A = QR$:
QR decomposition is numerically stable
$$\overbrace{\pmatrix{ x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x }}^A = \overbrace{\pmatrix{ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x }}^Q \;\; \overbrace{\pmatrix{ x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }}^R$$
If $A$ is not fully ranked:
QR algorithm is one of the most important numerical methods of the 20th century link
Start with $A_0 = A$, then iterate:
This algorithm is unconditionally stable because only orthogonal transformations are used.
Find the eigenvalues of the following matrix:
def qr_next(a) :
q, r = np.linalg.qr(a)
return r.dot(q)
a = np.array([[5, 4, -3, 2], [4, 4, 2, -1], [-3, 2, 3, 0], [2, -1, 0, -2]])
A = sp.MatrixSymbol('A', 4, 4)
A1 = sp.MatrixSymbol('A_1', 4, 4)
Q = sp.MatrixSymbol('Q_0', 4, 4)
R = sp.MatrixSymbol('R_0', 4, 4)
fmt.displayMath(fmt.joinMath('=', A, sp.Matrix(a)), pre="\\tiny ")
QR decomposition of $A_0 = A$:
q, r = np.linalg.qr(a)
fmt.displayMath(fmt.joinMath('=', Q, sp.Matrix(q).evalf(3)), fmt.joinMath('=', R, sp.Matrix(r).evalf(3)), pre="\\tiny ")
$A$ at the start of the next iteration, and after 20 iterations:
ii = 20
d = np.copy(a)
for i in range(ii) :
d = qr_next(d)
An = sp.MatrixSymbol('A_%d' % ii, 4, 4)
fmt.displayMath(fmt.joinMath('=', A1, sp.Matrix(r.dot(q)).evalf(3)), fmt.joinMath('=', An, sp.Matrix(np.round(d, 3))), pre="\\tiny ")
An orthogonal transformation representing reflection over a hyper plane, with a normal vector $\hat {\bs u}$ with unit L-2 norm:
$$ H \bs x = (I - {2\bs{\hat u \hat u}^T}) \bs x = \bs x - 2 \bs{\hat u} (\hat{\bs u}^T \bs x) $$
Household transformation can reflect an arbitrary vector $\bs x$ to $ \Vert \bs x \Vert_2 \hat{\bs e}_1$, where $\hat{\bs e}_1$ can be any unit vector.
We show how to use Householder transformation to perform QR decomposition of the $A$ in previous example.
def householder(x0, e=0) :
n = len(x0)
e1 = np.zeros(n-e)
x = x0[e:]
e1[0] = np.linalg.norm(x, 2)
u = x - e1
v = np.matrix(u/np.linalg.norm(u, 2))
hs = np.eye(n-e) - 2*v.T*v
h = np.eye(n)
h[e:,e:] = hs
return h
x, u, e1, Q, R = sp.symbols("x, u, e_1, Q, R")
xn = sp.symbols("\Vert{x}\Vert_2")
b = a[:, 0]
c = np.zeros(len(b))
c[0] = np.linalg.norm(b, 2)
fmt.displayMath(fmt.joinMath('=', A, sp.Matrix(np.round(a))), fmt.joinMath('=', x, sp.Matrix(a[:,0])),
fmt.joinMath('=', xn, np.round(np.linalg.norm(b, 2), 3)),
fmt.joinMath('=', e1, sp.Matrix([1, 0, 0, 0])),
fmt.joinMath('=', u, sp.Matrix(a[:,0]-c).evalf(3)), pre="\\tiny ")
fmt.displayMath("\;")
h1 = householder(a[:, 0], 0)
H1 = sp.MatrixSymbol('H_1', 4, 4)
a1 = h1.dot(a)
fmt.displayMath(fmt.joinMath('=', H1, sp.Matrix(np.round(h1, 3))),
fmt.joinMath('=', H1*A, sp.Matrix(np.round(a1, 3))), pre="\\tiny ")
continue to zero out the lower triangle
h2 = householder(a1[:, 1], 1)
H2 = sp.MatrixSymbol('H_2', 4, 4)
a2 = h2.dot(a1)
fmt.displayMath(fmt.joinMath('=', H2, sp.Matrix(np.round(h2, 3))),
fmt.joinMath('=', H2*H1*A, sp.Matrix(np.round(a2, 3))), pre="\\tiny ")
fmt.displayMath("\;")
h3 = householder(a2[:, 2], 2)
H3 = sp.MatrixSymbol('H_3', 4, 4)
a3 = h3.dot(a2)
fmt.displayMath(fmt.joinMath('=', H3, sp.Matrix(np.round(h3, 3))),
fmt.joinMath('=', H3*H2*H1*A, sp.Matrix(np.round(a3, 3))), pre="\\tiny ")
the final results are therefore $Q = (H_3H_2H_1)^T, R = Q^T A$:
q = (h3.dot(h2).dot(h1)).T
r = q.T.dot(a)
np.round(q.dot(r), 4)
fmt.displayMath(fmt.joinMath('=', Q, sp.Matrix(np.round(q, 3))), fmt.joinMath('=', R, sp.Matrix(np.round(r, 3))), pre="\\tiny ")
$$ \min_{\bs {\beta}} \Vert X \bs{\beta - y} \Vert_2$$
given the QR decomposition of $X = QR$:
$$ \min_{\bs {\beta}} \Vert X \bs{\beta - y} \Vert_2 = \min_{\bs {\beta}} \Vert Q^T X \bs \beta - Q^T \bs y \Vert_2 = \min_{\bs {\beta}} \Vert R \bs \beta - \bs y'\Vert_2$$
note that $R$ is right triangular, the vector whose norm is to be minimized looks like:
$$\scriptsize \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots\ & 0 & r_{nn} \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} - \begin{pmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_n \\ \hline y'_{n+1} \\ \vdots \\ y'_m \end{pmatrix} $$
therefore, the solution is the $\bs \beta$ that zero out the first $n$ elements of the vector.
By SIAM:
Why single out the 20th century?
Mahatma Gandhi: action expresses priorities. $\renewcommand{bt}[1]{\tilde{\bs #1}}$
Suppose $\tilde {\bs r}$ is a random vector, with expectation $\bar{\bs r} = \mathbb{E}[\tilde{\bs r}]$ and covariance matrix $ V = \mathbb{E}[(\bt r - \bar{\bs r})(\bt r - \bar{\bs r})^T] $
PC is defined to be the direction $\hat{\bs u}$ onto which the projection $\tilde {\bs r}^T \hat{\bs u}$ has the maximum variance,
es = np.random.normal(size=[3, 300])
x = (1.5*es[0,:] + .25*es[1,:])*.3 + 1
y = es[0,:]*.4 + es[2,:]*.2
cov = np.cov([x, y])
ev, evec = np.linalg.eig(cov)
ux = mean(x)
uy = mean(y)
figure(figsize=[6, 4])
plot(x, y, '.')
xlim(-2, 4)
ylim(-2, 2);
xlabel('x')
ylabel('y');
arrow(ux, uy, -3*sqrt(ev[1])*evec[0, 1], -3*sqrt(ev[1])*evec[1, 1], width=.01, color='r')
arrow(ux, uy, 3*sqrt(ev[0])*evec[0, 0], 3*sqrt(ev[0])*evec[1, 0], width=.01, color='r');
title('Principal Components of 2-D Data');
The projection $\hat{\bs u}^T \bt r$ is a random scalar:
If we limit ourselves to all $\bs u$ that is perpendicular to $\bs v_1$, then:
The total variance of the random vector $\tilde {\bs r}$ is sum of variance of all its $n$ elements, which equals:
The portion of variance explained by the first $k$ eigenvectors is $\frac{\sum_i^k \lambda_i}{\sum_i^n \lambda_i}$.
CMT rates are constant maturity treasury bond yield that are published daily by U. S. Treasury.
cmt_rates = pd.read_csv("data/cmt.csv", parse_dates=[0], index_col=[0])
cmt_rates.plot(legend=False, title='Historical CMT yield');
tenors = cmt_rates.columns.map(float)
cv = cmt_rates.cov()
fmt.displayDF(cv, "4g")
0.25 | 0.5 | 1 | 2 | 3 | 5 | 7 | 10 | 20 | |
---|---|---|---|---|---|---|---|---|---|
0.25 | 4.931 | 5.022 | 4.991 | 4.849 | 4.558 | 3.928 | 3.474 | 2.95 | 2.505 |
0.5 | 5.022 | 5.136 | 5.12 | 4.988 | 4.696 | 4.055 | 3.589 | 3.056 | 2.597 |
1 | 4.991 | 5.12 | 5.132 | 5.035 | 4.76 | 4.137 | 3.676 | 3.146 | 2.692 |
2 | 4.849 | 4.988 | 5.035 | 5.002 | 4.763 | 4.184 | 3.744 | 3.223 | 2.787 |
3 | 4.558 | 4.696 | 4.76 | 4.763 | 4.562 | 4.04 | 3.635 | 3.143 | 2.738 |
5 | 3.928 | 4.055 | 4.137 | 4.184 | 4.04 | 3.631 | 3.296 | 2.875 | 2.535 |
7 | 3.474 | 3.589 | 3.676 | 3.744 | 3.635 | 3.296 | 3.012 | 2.641 | 2.351 |
10 | 2.95 | 3.056 | 3.146 | 3.223 | 3.143 | 2.875 | 2.641 | 2.335 | 2.097 |
20 | 2.505 | 2.597 | 2.692 | 2.787 | 2.738 | 2.535 | 2.351 | 2.097 | 1.919 |
The eigenvectors and percentage explained,
xcv, vcv = np.linalg.eig(cv)
vcv = -vcv # flip the sign of eigen vectors for better illustratiaons
pct_v = np.cumsum(xcv)/sum(xcv)*100
import pandas as pd
pd.set_option('display.precision', 3)
fmt.displayDF(pd.DataFrame({'P/C':range(1, len(xcv)+1),
'Eigenvalues':xcv, 'Cumulative Var(%)': pct_v}).set_index(['P/C']).T, "2f")
P/C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Cumulative Var(%) | 96.27 | 99.74 | 99.92 | 99.96 | 99.99 | 99.99 | 99.99 | 100.00 | 100.00 |
Eigenvalues | 34.33 | 1.24 | 0.06 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
flab = ['factor %d' % i for i in range(1, 4)]
fig = figure(figsize=[12, 4])
ax1 = fig.add_subplot(121)
plot(tenors, vcv[:, :3], '.-');
xlabel('Tenors(Y)')
legend(flab, loc='best')
title('First 3 principal components');
fs = cmt_rates.dot(vcv).iloc[:, :3]
ax2 = fig.add_subplot(122)
fs.plot(ax=ax2, title='Projections to the first 3 P/Cs')
legend(flab, loc='best');
Given a generic $n$-dimensional SDE in vector form:
$$\renewcommand{Sigma}{\mathcal{S}} d \bs x = \bs u dt + A \Sigma d \bs w, \;\;\; d\bs w d\bs w^T = C dt$$
Recall Cholesky decomposition $V = LL^T$: $\Sigma \delta \bs w = L \bt z \sqrt{\delta t}$:
$$ \small \mathbb E [\Sigma\delta \bs w (\Sigma\delta \bs w)^T] = \mathbb E[(L \delta t \bt z \sqrt{\delta t}) (L \delta t \bt z \sqrt{\delta t})^T ] = L \mathbb E[\delta t \bt z\delta t \bt z^T] L^T \delta t = V \delta t $$
Use the PCA of the covariance matrix: $$ \scriptsize V = R_V \Lambda_V R_V^T \approx \dot R_V \dot \Lambda_V \dot R_V^T = \dot R_V \dot H_V \dot H_V^T \dot R_V^T = (\overbrace{\dot R_V \dot H_V}^{L_V})(\dot R_V\dot H_V )^T \\$$ Or PCA on the correlation matrix: $$ \scriptsize V = \Sigma C \Sigma = \Sigma (R_C \Lambda_C R_C^T) \Sigma \approx \Sigma \dot R_C \dot \Lambda_C \dot R_C^T \Sigma = \Sigma \dot R_C \dot H_C \dot H_C^T \dot R_C^T \Sigma^T = (\overbrace{\Sigma \dot R_C \dot H_C}^{L_C})(\Sigma \dot R_C\dot H_C )^T $$
Simulation can then be driven by $\Sigma \delta \bs w = L \dot{\bt z} \sqrt{\delta t}$:
Given the EVDs on covariance and correlation matrices:
$$R_V \Lambda_V R_V^T = V = \Sigma C \Sigma = \Sigma R_C \Lambda_C R_C^T \Sigma$$
Are they equivalent?
However, neither is true because:
There is no simple relationship btw these two EVDs.
The PCs are no longer orthogonal after stretching horizontally.
figure(figsize=[13, 4])
subplot(1, 2, 1)
plot(x, y, '.')
xlim(-2, 4)
ylim(-2, 2);
xlabel('x')
ylabel('y');
arrow(ux, uy, -3*sqrt(ev[1])*evec[0, 1], -3*sqrt(ev[1])*evec[1, 1], width=.01, color='r')
arrow(ux, uy, 3*sqrt(ev[0])*evec[0, 0], 3*sqrt(ev[0])*evec[1, 0], width=.01, color='r');
title('Unscaled PCs');
subplot(1, 2, 2)
scale = 1.5
plot(x*scale, y, '.')
xlim(-2, 4)
ylim(-2, 2);
xlabel('x')
ylabel('y');
arrow(ux*scale, uy, -3*sqrt(ev[1])*evec[0, 1]*scale, -3*sqrt(ev[1])*evec[1, 1], width=.01, color='r')
arrow(ux*scale, uy, 3*sqrt(ev[0])*evec[0, 0]*scale, 3*sqrt(ev[0])*evec[1, 0], width=.01, color='r');
title('Scaled');
PCA is a powerful technique, however, beware of its limitations:
PCA is usually applied to different data points of the same type
The PCA analysis has some similarity to the least square problem, both of them can be viewed as minimizing the L2 norm of residual errors.
xs = np.array([x, np.ones(len(x))]).T
beta = np.linalg.inv(xs.T.dot(xs)).dot(xs.T).dot(y)
s_x, s_y = sp.symbols('x, y')
br = np.round(beta, 4)
figure(figsize=[13, 4])
subplot(1, 2, 1)
plot(x, y, '.')
xlim(-2, 4)
ylim(-2, 2);
xlabel('x')
ylabel('y');
dx = 4*sqrt(ev[0])*evec[0, 0]
dy = 4*sqrt(ev[0])*evec[1, 0]
arrow(ux-dx, uy-dy, 2*dx, 2*dy, width=.01, color='k');
ex = 3*sqrt(ev[1])*evec[0, 1]
ey = 3*sqrt(ev[1])*evec[1, 1]
plot([ux, ux+ex], [uy, uy+ey], 'r-o', lw=3)
legend(['data', 'residual error'], loc='best')
title('PCA');
subplot(1, 2, 2)
plot(x, y, '.')
xlim(-2, 4)
ylim(-2, 2);
xlabel('x')
ylabel('y');
arrow(-1, -1*beta[0]+beta[1], 4, 4*beta[0], width=.01, color='k');
y0 = (ux+ex)*beta[0] + beta[1]
plot([ux+ex, ux+ex], [y0, uy+ey], 'r-o', lw=3)
legend(['data', 'residual error'], loc='best')
title('Least Square');
The main differences between PCA and least square (regression):
PCA | Least Square/Regression | |
---|---|---|
Scale Invariant | No | Yes |
Symmetry in Dimension | Yes | No |
To choose between the two:
It is important to choose the right variable to apply PCA. The main considerations are:
Values or changes
Spot or forward
Since the PCA is commonly applied to a correlation/covariance matrix, it is equivalent to ask what variables' correlation/covariance matrix we should model.
Spurious correlation: variables can appear to be significantly correlated, but it is just an illusion:
f3 = pd.read_csv('data/f3.csv', parse_dates=[0]).set_index('Date').sort_index()
r = np.log(f3).diff()
fmt.displayDFs(f3.corr(), r.corr(), headers=['Price Correlation', 'Return Correlation'], fmt="4g")
Price Correlation | Return Correlation | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
The correlation between 9Y and 10Y spot rates and forward rates:
es = np.random.normal(size=[2, 500])
r0 = es[0,:]*.015 + .05
f1 = es[1,:]*.015 + .05
r1 = -np.log(np.exp(-9*r0-f1))/10
rc = np.corrcoef(np.array([r0, r1]))[0, 1]
fc = np.corrcoef(np.array([r0, f1]))[0, 1]
figure(figsize=[12, 4])
subplot(1, 2, 1)
plot(r0, r1, '.')
xlabel('9Y rate')
ylabel('10Y spot')
title('Corr(9Y Spot, 10Y Spot) = %.4f'% rc)
subplot(1, 2, 2)
plot(r0, f1, '.')
xlabel('9Y rate')
ylabel('9-10Y forward')
title('Corr(9Y Spot, 9-10Y Forward) = %.4f'% fc);
$$\begin{eqnarray} \exp(-10 r_{10}) &=& \exp(-9 r_9)\exp(-(10-9) f(9, 10) ) \\ r_{10} &=& 0.9r_9 + 0.1f(9, 10) \end{eqnarray}$$
$$ r_{10} = 0.9r_9 + 0.1f(9, 10) $$
rotate, stretch and rotate, then you get back to square one, that's pretty much the life in a bank.
For any real matrix $M$, $\sigma \geq 0$ is a singular value if there exists two $\bf\mbox{unit-length}$ ectors $\bs {u, v}$ such that:
$\bs {u, v}$ are called left and right singular vector of $M$.
By convention,
Consider $\bs u^T M \bs v$ for real matrix $M$:
Apply the Lagrange multiplier, with constraints $\bs u^T \bs u = \bs v^T \bs v = 1$:
$$\small \begin{array} \\l &= \bs u^T M \bs v - \lambda_1 (\bs u^T \bs u - 1) - \lambda_2 (\bs v^T \bs v - 1) \\ \frac{\partial l}{\partial{\bs u^T}} &= M \bs v - 2 \lambda_1 \bs u = \bs 0 \iff \bs u^T M \bs v - 2 \lambda_1 = \bs 0\\ \frac{\partial l}{\partial{\bs v}} &= \bs u^T M - 2\lambda_2 \bs v^T = \bs 0^T \iff \bs u^T M \bs v- 2\lambda_2 = \bs 0 \end{array}$$
Therefore, $$ 2\lambda_1 = \small \bs u^T M \bs v = 2\lambda_2 $$ $$M \bs v = \sigma \bs u \;,\; M^T\bs u = \sigma \bs v $$
Given $\bs{u_1, v_1}$ are the first singular vectors of $M$:
$$\bs x^T \bs v_1 = 0 \iff (M \bs x)^T \bs u_1 = 0 \iff \bs u_1^T M \bs x = 0 $$
because:
$$ (M \bs x)^T \bs u_1 = \bs x^T M^T \bs u_1 = \bs x^T \sigma_1 \bs v_1 = 0 $$
Therefore, if we only consider those $\bs u^T M^T \bs u_1 = 0$ ($M$-orthogonal), the corresponding $\bs v$ must be orthogonal to $\bs v_1$ :
We can write all singular vectors and singular values in matrix format, which is the singular value decomposition (SVD):
$$ U^T M V = \Sigma \iff M = U \Sigma V^T $$
$M$ | $U$ | $\Sigma$ | $V$ | |
---|---|---|---|---|
Name | Original Matrix | Left singular vector | Singular value | Right singular vector |
Type | Real | Orthogonal, real | Diagonal, positive | Orthogonal, real |
Size | $m \times n$ | $m\times m$ | $m\times n$ | $n \times n$ |
$$ M = U \Sigma V^T $$
SVD and eigenvalue decomposition (EVD) are closely related to each other:
Given the SVD decomposition $X = U\Sigma V^T$, the SVD of $X$'s pseudo inverse is:
$$X^+ = (X^TX)^{-1}X^T = V \Sigma^+ U^T$$
where $\Sigma^+$ is the pseudo inverse of $\Sigma$, whose diagonal elements are the reciprocals of those in $\Sigma$.
Proof: the last equation is obviously true, and every step is reversible:
$$\begin{array}&(X^TX)^{-1}X^T &= V\Sigma^+ U^T \\ (V \Sigma^T \Sigma V^T)^{-1} V\Sigma^TU^T &= V\Sigma^+ U^T \\ (V \Sigma^T \Sigma V^T)^{-1} V\Sigma^T\Sigma &= V \Sigma^+\Sigma \\ (V \Sigma^T \Sigma V^T)^{-1} V\Sigma^T\Sigma &= V \\ (V \Sigma^T \Sigma V^T)^{-1} (V\Sigma^T\Sigma V^T) &= I \end{array}$$
SVD is another way to solve the least square problem.
Consider a real matrix $A$, its L2 norm is defined as the maximum of $\frac{\Vert A \bs x \Vert_2}{\Vert \bs x \Vert_2}$:
$$ \Vert A \Vert_2^2 = \max_{\bs x} \frac{\Vert A \bs x \Vert_2^2}{\Vert \bs x \Vert_2^2} = \max_{\bs x} \frac{\bs x^T A^T A \bs x}{\bs x^T \bs x} = \max_{\hat{\bs x}} \hat{\bs x}^T A^T A \hat{\bs x} = \sigma_1(A)^2$$
where $\hat{\bs x} = \frac{\bs x}{\Vert \bs x \Vert_2}$ is a unit vector, and $\sigma_1(A)$ is the largest singular value of $A$.
For a generic non-square matrix $A$:
SVD offers clear intuitions in understanding the L-2 condition number of a Matrix $A$.
For a linear system $\bs y = A \bs x$, consider a perturbation $\delta \bs x$ to the input $\bs x$:
When working with near singular matrix, SVD can identify ill-conditioned area:
Singular matrix are those that are not fully ranked
SVD can detect near singular matrices
SVD can find low rank approximations to a full rank matrix
What is the change in $\lambda_i$ if we perturb the symmetric matrix $A$?
$$ A \bs v_i = \lambda_i \bs v_i$$
Apply the perturbation analysis: $\delta A = \dot{A} \epsilon, \delta \lambda_i = \dot{\lambda_i} \epsilon, \delta \bs v_i = \dot{\bs v_i} \epsilon$, the first order terms of $\epsilon$:
$$\begin{array} \\ (A + \dot{A}\epsilon )(\bs v_i + \dot{\bs v_i}\epsilon) &= (\lambda_i + \dot{\lambda_i}\epsilon) (\bs v_i + \dot{\bs v_i} \epsilon) \\ \dot{A}\bs v_i + A \dot{\bs v_i} &= \lambda_i \dot{\bs v_i} + \dot{\lambda_i}\bs v_i \\ \bs v_i^T\dot{A}\bs v_i + \bs v_i^T A \dot{\bs v_i} &= \bs v_i^T \lambda_i \dot{\bs v_i} + \bs v_i^T \dot{\lambda_i}\bs v_i \\ \bs v_i^T\dot{A}\bs v_i &= \dot{\lambda_i} \end{array}$$
Therefore: $$\begin{array} \\ \frac{ | \delta \lambda_i |}{| \lambda_i |} &= \frac{\Vert \bs v_i^T\delta A \bs v_i\Vert_2}{|\lambda_i|} \le \frac{\Vert \delta A \Vert_2}{|\lambda_i|} = \frac{\Vert A\Vert_2}{|\lambda_i|} \frac{\Vert \delta A \Vert_2}{\Vert A \Vert_2} = \left\vert \frac{\lambda_1}{\lambda_i}\right\vert \frac{\Vert \delta A \Vert_2}{\Vert A \Vert_2} \end{array}$$
For real matrix $A$:
Decomposition | Applicability | Formula | Results | Key applications |
---|---|---|---|---|
LU | square, full rank | $A = LU$ | lower, upper triangular | matrix inversion |
Cholesky | symmetric positive definite | $A = LL^T$ | lower triangular | simulate correlated factors |
QR | any | $A = Q R$ | orthogonal, upper triangular | solve eigen values, least square |
EVD | symmetric | $A = R\Lambda R^T$ | orthogonal, real diagonal | PCA |
SVD | any | $A = U\Sigma V^T$ | orthogonal, positive diagonal, orthogonal | error analysis, rank reduction |
Required reading:
Recommended reading:
Homework: